Chemical patterning for the highly specific and programmed assembly of nanostructures

نویسندگان

  • Balaji Kannan
  • Rajan P. Kulkarni
  • Kenneth Castelino
  • Arun Majumdar
چکیده

We have developed a new chemical patterning technique based on standard lithography-based processes to assemble nanostructures on surfaces with extraordinarily high selectivity. This patterning process is used to create patterns of aminosilane molecular layers surrounded by highly inert poly ethylene glycol PEG molecules. While the aminosilane regions facilitate nanostructure assembly, the PEG coating prevents adsorption of molecules and nanostructures, thereby priming the semiconductor substrate for the highly localized and programmed assembly of nanostructures. We demonstrate the power and versatility of this manufacturing process by building multilayered structures of gold nanoparticles attached to molecules of DNA onto the aminosilane patterns, with zero nanocrystal adsorption onto the surrounding PEG regions. The highly specific surface chemistry developed here can be used in conjunction with standard microfabrication and emerging nanofabrication technology to seamlessly integrate various nanostructures with semiconductor electronics. © 2005 American Vacuum Society. DOI: 10.1116/1.1990159

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography

Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...

متن کامل

Diamondoids and DNA Nanotechnologies

Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...

متن کامل

Enhancement of RecA-mediated self-assembly in DNA nanostructures through basepair mismatches and single-strand nicks

The use of DNA as a structural material for nanometre-scale construction has grown extensively over the last decades. The development of more advanced DNA-based materials would benefit from a modular approach enabling the direct assembly of additional elements onto nanostructures after fabrication. RecA-based nucleoprotein filaments encapsulating short ssDNA have been demonstrated as a tool for...

متن کامل

Chemical Vapor Deposition Synthesis of Novel Indium Oxide Nanostructures in Strongly Reducing Growth Ambient

The current study reports some interesting growth of novel In2O3 nanostructures using ambient-controlled chemical vapor deposition technique in the presence of a strongly reducing hydrazine ambient. The experiments are systematically carried out by keeping either of the carrier gas flow rate or the source temperature constant, and varying the other. For each of the depositions, the growth is st...

متن کامل

Large-area nanoscale patterning: chemistry meets fabrication.

This Account describes a new paradigm for large-area nanoscale patterning that combines bottom-up and top-down approaches, merging chemistry with fabrication. This hybrid strategy uses simple nanofabrication techniques to control the alignment, size, shape, and periodicity of nanopatterns and chemical methods to control their materials properties and crystallinity. These tools are highly flexib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005